In vivo efficacy of a silicone‒cationic steroid antimicrobial coating to prevent implant-related infection.

نویسندگان

  • Dustin L Williams
  • Bryan S Haymond
  • James P Beck
  • Paul B Savage
  • Vinod Chaudhary
  • Richard T Epperson
  • Brooke Kawaguchi
  • Roy D Bloebaum
چکیده

Active release antimicrobial coatings for medical devices have been developed to prevent and treat biofilm implant-related infections. To date, only a handful of coatings have been put into clinical use, with limited success. In this study, a novel antimicrobial compound was incorporated into a silicone (polydimethylsiloxane or PDMS) polymer to develop a novel active release coating that addressed several limitations of current device coatings. The efficacy of this coating was optimized using an in vitro flow cells system, then translated to an animal model of a simulated Type IIIB open fracture wherein well-established biofilms were used as initial inocula. Results indicated that the novel coating was able to prevent infection in 100% (9/9) of animals that were treated with biofilms and the novel coating (treatment group). In contrast, 100% (9/9) of animals that were inoculated with biofilms and not treated with the coating (positive control), did develop infection. Nine animals were used as negative controls, i.e., those that were not treated with biofilms, and showed a rate of infection of 11% (1/9). Eight animals were treated with the novel coating only to determine its effect on host tissue. Results indicated that the novel active release coating may have significant promise for future application to prevent biofilm implant-related infections in patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber.

Biomaterial-centered infection is a dreaded complication associated with the use of biomedical implants. In this paper, the antimicrobial activity of silicone rubber with a covalently coupled 3-(trimethoxysilyl)-propyldimethyloctadecylammonium chloride (QAS) coating was studied in vitro and in vivo. Gram-positive Staphylococcus aureus ATCC 12600, Staphylococcus epidermidis HBH, 102, and Gram-ne...

متن کامل

Implants modified with polymeric nanofibers coating containing the antibiotic vancomycin

Objective(S): Implant-related infections are disastrous complications in the clinic. One recent strategy to reduce the rate of infection is using the bioactive coating with an antibiotic. The purpose of these bioactive surfaces is to prevent bacterial adhesion to the implant and, consequently, the development of biofilm. In this study, vancomycin-loaded polymeric coating on imp...

متن کامل

Electrospun vancomycin-loaded coating on titanium implants for the prevention of implant-associated infections

The objectives of this work were to develop an antibiotic coating on the surface of a titanium plate to determine its antibacterial properties in vitro and in vivo. To prepare vancomycin-coated titanium implants, we adopted the electrospinning nanotechnique. The surface structure of the coating implants was observed using a scanning electron microscope. An elution method and a high-pressure liq...

متن کامل

Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections.

Prevention of implant-associated infections has been one of the main challenges in orthopaedic surgery. This challenge is further complicated by the concern over the development of antibiotic resistance as a result of using traditional antibiotics for infection prophylaxis. The objective of this study was to develop a technique that enables the loading and local delivery of a unique group of ca...

متن کامل

In vivo performance of melimine as an antimicrobial coating for contact lenses in models of CLARE and CLPU.

PURPOSE One strategy to minimize bacteria-associated adverse responses such as microbial keratitis, contact lens-induced acute red eye (CLARE), and contact lens induced peripheral ulcers (CLPUs) that occur with contact lens wear is the development of an antimicrobial or antiadhesive contact lens. Cationic peptides represent a novel approach for the development of antimicrobial lenses. METHODS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 33 33  شماره 

صفحات  -

تاریخ انتشار 2012